Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles
نویسندگان
چکیده
Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.
منابع مشابه
Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.
A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydridi...
متن کاملDirect visualization of hydrogen absorption dynamics in individual palladium nanoparticles
Many energy storage materials undergo large volume changes during charging and discharging. The resulting stresses often lead to defect formation in the bulk, but less so in nanosized systems. Here, we capture in real time the mechanism of one such transformation-the hydrogenation of single-crystalline palladium nanocubes from 15 to 80 nm-to better understand the reason for this durability. Fir...
متن کاملAdaptive Tunable Vibration Absorber using Shape Memory Alloy
This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...
متن کاملمطالعۀ گذار فاز هماتیت-آهن در فرآیند تولید نانوذرات هسته-پوستۀ آهن-کربن و بررسی خواص مغناطیسی و الکترومغناطیسی آنها
The structural properties and microwave absorption capability of the iron nanoparticles and iron-carbon core-shell nanoparticles have been studied, in the present paper. The investigated nanoparticles were synthesized by hydrothermal route and by reduction of hematite nanoparticles during annealing in argon-hydrogen atmosphere. Hematite-iron phase transformation during the reduction process has...
متن کاملStrain-Induced Martensite Transformation Simulations during Cold Rolling of AISI 301 Austenitic Stainless Steel
Austenite is a semi-stable phase in most stainless steels that deforms to martensite under Md30 and forms martensitetype ά and ε due to the deformation in the steels. Since the distribution of strain induced martensite plays animportant role in achieving desired properties, the main objective of the present work is to model martensitedistribution of ά during cold rolling using...
متن کامل